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Abstract—Robot navigation in dynamic, human-centered en-
vironments requires socially-compliant decisions grounded in
robust scene understanding, encompassing spatiotemporal aware-
ness, as well as the ability to interpret human intentions.
Recent Vision-Language Models (VLMs) show signs of object
recognition, common-sense reasoning, and contextual under-
standing—capabilities that make them promising for addressing
the nuanced requirements of social robot navigation. However,
it remains unclear whether VLMs can reliably perform the
complex spatiotemporal reasoning and intention inference needed
for safe and socially compliant robot navigation. In this paper, we
introduce the Social Navigation Scene Understanding Benchmark
(SocialNav-SUB), a Visual Question Answering (VQA) dataset
and benchmark designed to evaluate VLMs for scene under-
standing of real-world social robot navigation scenarios. The
benchmark provides a unified framework for evaluating VLMs
against human and rule-based baselines across VQA tasks requir-
ing spatial, spatiotemporal, and social reasoning in social robot
navigation. Through experiments with state-of-the-art VLMs, we
find that while the best-performing VLM achieves an encouraging
probability of agreeing with human answers, it still lags behind a
simpler rule-based approach and human performance, indicating
critical gaps in social scene understanding of current VLMs. Our
benchmark sets the stage for further research on foundation
models for social robot navigation, offering a framework to
explore how VLMs can be tailored to meet real-world social
robot navigation needs.

I. INTRODUCTION

Social robot navigation, defined as the ability for robots
to move effectively and safely within human-populated envi-
ronments while adhering to social norms, is a fundamental
yet challenging task in robotics [12]. As shown in Figure 1,
navigating through social scenarios requires robots to interpret
human intentions, adhere to implicit social rules, and respond
to dynamic environments demanding advanced spatial, spa-
tiotemporal, and social reasoning. While traditional methods
often relied on model-based techniques like the Social Force
Model [5] or proxemics-based methods [13], recent learning-
based approaches, including Learning from Demonstration
[6, 8] and Reinforcement Learning [28, 3, 11], have shown
promise but frequently struggle to generalize effectively in
real-world scenarios [12, 18]. To address these limitations,
diverse datasets like SCAND [8, 15, 7] have been introduced,
providing more realistic social navigation contexts.

Recently, there has been growing interest in applying large
Vision-Language Models (VLMs) to robotic tasks due to their
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Fig. 1: Examples of social robot navigation scenarios from
SCAND [8] where humans in the scene have to be taken
into consideration. The ability to determine socially compliant
navigation actions requires understanding each dynamic scene by
spatiotemporal reasoning (e.g. the movements of people in the scene),
social reasoning (inferring the navigation intentions of people in the
scene), and complying to implicit social rules.

demonstrated strengths in contextual understanding, common-
sense reasoning, and chain-of-thought reasoning [10, 16, 24].
VLMs have been effectively applied to robotic manipulation
[14], task planning [27], and human-robot interaction [1, 4].
Initial explorations, such as VLM-Social-Nav [22], suggest
their potential in social robot navigation; however, these eval-
uations remain limited to controlled scenarios and prelimi-
nary assessments. Moreover, state-of-the-art large VLMs still
face substantial challenges in robust spatial reasoning, casting
doubt on their capabilities to navigate complex, realistic social
situations [20, 2, 23].

Given these gaps, a comprehensive evaluation framework
is essential to rigorously assess VLM capabilities in three
critical dimensions of social robot navigation: spatial rea-
soning, spatiotemporal reasoning, and social interaction inter-
pretation. Existing evaluations often neglect the complexity
of dynamic scenarios or lack temporal components [22, 20].
Addressing this need, we introduce the Social Navigation
Scene Understanding Benchmark (SOCIALNAV-SUB), a novel
Visual Question Answering (VQA) benchmark utilizing social
navigation scenarios from the SCAND dataset [8, 9]. Our
benchmark includes robust human-subject evaluations serving
as ground truth, enabling systematic assessment of VLM
performance on realistic social navigation tasks. Experiments
conducted reveal notable performance gaps between state-
of-the-art VLMs and both human and rule-based baselines,
especially in spatial and spatiotemporal reasoning.



Fig. 2: An overview of SOCIALNAV-SUB, which facilitates the systematic evaluation of VLMs in social robot navigation scenarios. Using
SCAND data, human-labeled VQA datasets, and various VLMs, this framework offers the evaluation of VLMs across multiple dimensions of
scene understanding for social robot navigation that can enable advancements in prompt designs, social reasoning, and social robot navigation
research in general.

SOCIALNAV-SUB is a first-of-its-kind benchmark specifi-
cally designed to systematically evaluate and refine VLMs for
real-world social robot navigation, providing a clear frame-
work for comparing models and identifying key strengths and
weaknesses. SOCIALNAV-SUB establishes a foundation for
continuous and iterative advancements, guiding the robotics
community toward developing more socially intelligent robotic
systems capable of effectively navigating complex, dynamic
human-centered environments. By bridging the gap between
VLM capabilities and the challenges of social robot naviga-
tion, our work provides a medium to advance the use of VLMs
for social robot navigation.

II. SOCIALNAV-SUB

To evaluate Vision-Language Models (VLMs) on scene
understanding for social robot navigation, we present
the Social Navigation Scene Understanding Benchmark
(SOCIALNAV-SUB), a VQA benchmark for evaluating VLMs
in socially dense navigation scenarios. Following recent works
that have demonstrated the effectiveness of visual grounding
and object-centric representations [14, 26, 25], we provide
numbered labels within visual markers for objects of relevance
(in our case, pedestrians) for prompting and object-centric
annotations; this provides the benchmarked VLMs clear visual
references and contextually rich instructions. SOCIALNAV-
SUB is built on top of the SCAND dataset’s social navigation
scenarios that provide varying levels of crowd density and
social navigation interactions and features the following:

(1) Challenging social navigation scenarios that capture the
complexities of crowded and dynamic human environ-
ments;

(2) Object-centric representations combining both the robot’s
visual perspective and a bird’s-eye view (BEV) containing

pedestrian coordinate tracking for a richer object-centric
representation;

(3) A diverse question set probing spatial reasoning, temporal
understanding, and social reasoning; and

(4) A robust human baseline, where multiple annotators pro-
vide ground-truth responses for each scenario.

All above features are expanded in the following subsections
below.

A. Challenging Social Navigation Scenarios
To effectively evaluate VLMs’ scene understanding ca-

pabilities in practical social robot navigation settings, we
leverage the SCAND dataset [8] to construct the SOCIALNAV-
SUB benchmark. SCAND features social robot navigation
data collected by teleoperated mobile robots navigating in
diverse and potentially crowded scenarios. In particular, we
extract segments from SCAND that showcase high crowd
density, close pedestrian proximity, and dynamically changing
human motion. As illustrated in Figure 1, these densely occu-
pied scenarios typically involve pedestrians that obstruct the
robot’s direct path to its goal. Hence, the teleoperated robots
demonstrate complex, socially compliant interactions with the
pedestrians, making these samples valuable for evaluating
VLMs’ scene understanding capabilities in real-world social
navigation environments.

B. Rich and Object-Centric Visual Representations
The samples from SCAND are RGB image sequences cap-

tured from a robot-mounted front-view camera; however, large
VLMs often struggle to infer spatial and fine-grained object-
level relationships from these visual queries alone [20]. To ad-
dress this, we augment images with object-centric annotations
using off-the-shelf vision models, a strategy shown to enhance
VLM performance in VQA tasks [14, 26]. Specifically, pedes-
trians in the front-view images are annotated with numbered,



color-coded circles, and additional BEV images illustrating
pedestrian and robot positions are generated, preserving scene
context while clearly representing spatial relationships such as
distances and obstructed paths. Our data processing pipeline
employs PHALP [19] to estimate pedestrian 3D poses from
monocular videos, transforms these poses into global coordi-
nates using robot odometry data, applies Kalman smoothing,
and finally projects pedestrian positions onto front-view and
BEV images using SCAND’s camera parameters. Querying
VLMs with these enriched visual inputs allows SOCIALNAV-
SUB to yield practical insights into effectively leveraging
VLMs for social robot navigation, while ensuring fairness by
providing identical inputs to human annotators.

C. Diverse Scene Understanding Questions

Following the aforementioned data processing pipeline, we
construct a set of samples consisting of multi-view image
sequences with object-centric annotations, each representing
a 2.5 s segment sampled at 4 Hz. To comprehensively eval-
uate VLMs’ scene understanding capabilities in social robot
navigation, we design a range of multiple-choice questions.

• Spatial reasoning: Questions about describing the spa-
tial relations in a single frame.

• Spatiotemporal reasoning: Questions about describing
the motion of the robot and pedestrians over time.

• Social reasoning over time: Questions that infer whether
the robot and pedestrians are interacting and how they
interact.

These three categories map onto what we see as being the
key challenges of social navigation: perceiving spatial relations
among participants (spatial reasoning), tracking their evolution
as people move (spatiotemporal reasoning), and recognizing
how humans and robots interact in the context of social
navigation (social reasoning over time). By evaluating VLM
performance across these dimensions, we gain a fine-grained
understanding of where models excel or struggle in parsing
and interpreting social navigation scenes.

D. Robust Human Baseline from Human-Subject Study

We conducted human-subject studies to collect human re-
sponses as ground-truth labels for these questions under an
IRB-approved protocol. Given the subjective nature of many
questions, particularly those related to social reasoning, we
collected responses from five human participants for each
scenario. Participants were recruited via Prolific [17] and were
asked to complete a questionnaire containing questions for
multiple randomly sampled scenarios. To ensure the quality
of the collected responses, we added attention-check questions
to the questionnaire and manually inspected the participants’
answers to reject low-quality samples.

By gathering this distribution of human responses, we can
measure how closely each VLM output aligns with human
judgments. Specifically, we compute the agreement between
VLM answers and all human answers for a given question,
which indicates the extent to which a model’s performance

approaches human-level responses. We define a metric, Prob-
ability of Agreement (PA), to measure how closely a set of
answers (from a VLM, a particular human, or a rule-based
baseline) aligns with human responses overall.
Notation and Setup.

• NQ: total number of questions.
• NH : number of human respondents per question.
• Aq: the evaluated answer (from a VLM or one human)

to question q.
• Ah

q,i: the i-th human’s answer for question q, where i ∈
{1, . . . , NH}.

We define a Probability of Agreement (PA) as:

PA =
1

NQ

NQ∑
q=1

( 1

NH

NH∑
i=1

I[Aq = Ah
q,i ]

)
, (1)

where I[·] is an indicator function that is 1 if Aq (the evaluated
answer) exactly matches the i-th human’s response Ah

q,i, and
0 otherwise for the corresponding multiple-choice question q.
Summing over all human responses for each question yields
the fraction of total (answer, human answer) pairs that agree. A
higher PA indicates that the evaluated answers coincide more
frequently with the collected human responses.

III. PRELIMINARY EXPERIMENT

A. Research Question

Our central research question examines how well state-
of-the-art large VLMs that support image sequences capture
spatial reasoning, scene understanding, and social reasoning
in social robot navigation scenarios. By focusing on this
question, we aim to rigorously assess the capabilities and
limitations of large VLMs for understanding complex social
robot navigation environments.

B. Experiment Process

Our experiment process begins by presenting survey
prompts alongside their visual and BEV representations to the
VLM, using the data processing pipeline previously shown in
Figure ??. The format given to the VLMs closely resembles
the same visual and text format that was received by human
participants, ensuring fair comparison. Furthermore, we use
chain-of-thought reasoning as a prompting technique to carry
out our experiments, since this is highly similar to the sequen-
tial manner in which humans provided answer labels, allowing
for fair comparison. Specifically, our usage of chain-of-thought
provides the previous answers of the VLM for future questions
which may help it deduce the answer to question; for example,
the pedestrian is at the left in the beginning and the end and the
goal is on the right, so the pedestrian is likely not obstructing
the path to the goal. The responses generated by the VLM
are then compared against human responses from the human
dataset using the previously defined Probability of Agreement
(PA) metric.

Humans can naturally infer the underlying spatial and social
relations between the robots and pedestrian, making them



Category Model All Spatial Reasoning Spatiotemporal Reasoning Social Reasoning

Baseline
Human Oracle 0.83 ± 0.00 0.80 ± 0.01 0.82 ± 0.01 0.85 ± 0.01
Rule-Based 0.69 ± 0.00 0.61 ± 0.01 0.67 ± 0.01 0.73 ± 0.01

VLM
Gemini 2.0 0.62 ± 0.01 0.58 ± 0.01 0.46 ± 0.01 0.68 ± 0.01
GPT-4o 0.51 ± 0.01 0.58 ± 0.01 0.51 ± 0.02 0.48 ± 0.01
LLaVa-Next-Video 0.48 ± 0.01 0.34 ± 0.01 0.62 ± 0.01 0.50 ± 0.01

TABLE I: Average Performance Across Question Categories. We compute the Probability of Agreement (PA) for all questions and for
each question category, along with standard error across the unique questions. We separate rows into two broad categories (Baseline and
VLM). All VLMs use chain-of-thought reasoning, since each human provided answers sequentially.

excellent references for comparing VLM performance to. On
the other hand, are large VLMs truly necessary for analyzing
these social robot navigation scenarios, or can a simpler, rule-
based system suffice? To address both of these, our baselines
are as follows:
(1) Human Oracle Baseline: Selects the most common an-

swer for each question from the human distribution. This
baseline serves as an upper bound for performance when
models may only provide one answer.

(2) Rule-Based Baseline: Uses the position data of pedestrians
in the scene (extracted using the Optical Character Recog-
nition (OCR) algorithm Tesseract [21]) and uses a set of
hand-crafted rules to generate answers to VQA prompts.

C. Results

We run our experiments by querying each VLM model once
per unique question using default hyperparameters for each
VLM. The average results over all questions and question
categories is shown in Table I, which indicate that average
human performance serves as a reliable baseline. Among the
large VLMs evaluated, Gemini achieves the highest overall
performance, but still has a considerable gap compared to the
human oracle and Rule-Based baselines. This performance gap
suggests that state-of-the-art large VLMs are not yet fully
ready for the challenges of scene understanding for social
robot navigation.

When examining performance across the three question cat-
egories, models consistently lag behind the human oracle and
the Rule-Based baseline, though the extent of the gap varies by
category. In spatial reasoning, the consensus among humans
(human oracle) far exceeds that of the best models, indicating
that current large VLMs struggle to accurately interpret static
spatial relationships compared to human observers. A similar
finding is observed in spatiotemporal reasoning, where models
show even greater difficulty at capturing dynamic changes
and interactions over time. In contrast, in social reasoning
tasks, models perform relatively closer to human consensus
levels, suggesting that large VLMs are somewhat more adept
at interpreting social cues and interactions than they are at
understanding spatial relationships, although there remains a
noticeable gap. Empirically, we found many cases of VLMs
failing on questions with high human consensus in all three
reasoning categories, especially in cases of high crowd densi-
ties.

Overall, our evaluation reveals that while state-of-the-art

large VLMs like Gemini show promising advances, they still
fall short of human and rule-based performance across key
reasoning tasks. Although models come closer to human oracle
performance in social reasoning tasks, the results suggest
that significant improvements to large VLM architectures or
refining querying strategies are needed before these large
VLMs can reliably support complex, real-world social robot
navigation.

IV. CONCLUSION

This paper introduced the Social Navigation Scene Un-
derstanding Benchmark (SOCIALNAV-SUB), a novel VQA
benchmark leveraging densely populated, dynamic environ-
ments from SCAND to provide object centric visual inputs,
including augmented front view images and BEV prompts,
paired with diverse questions targeting spatial, spatiotemporal,
and social reasoning. Grounded in robust human subject
evaluations, SOCIALNAV-SUB offers quantifiable metrics re-
flective of human-level understanding in social robot naviga-
tion contexts. By highlighting current VLMs’ strengths and
weaknesses, SOCIALNAV-SUB facilitates systematic model
comparisons, enables exploration of prompt design choices,
fosters method development, and guides iterative improve-
ments toward more socially aware and reliable robotic systems
for social robot navigation.
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